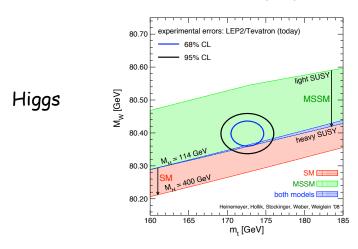


Physics Motivation

Estia Eichten

Fermilab

Estia Eichten MAP Review @ Fermilab 08/24/2010


Physics Landscape

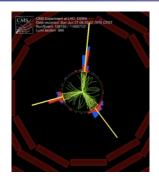

- All data consistent with Standard Model but it's incomplete
 - dark matter; neutrino masses and mixing -> new fields or interactions;
 baryon asymmetry -> more CP violation
- Theoretical questions
 - The issue of naturalness and the origin of mass;

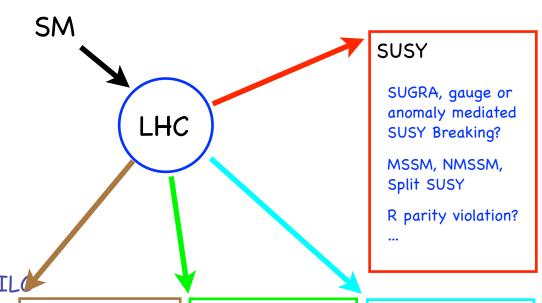
•
$$\mu^2 (\Phi^{\dagger}\Phi) + \lambda (\Phi^{\dagger}\Phi)^2 + \Gamma_{ij}\psi_{iL}^{\dagger}\psi_{jR}\Phi + h.c.$$

 $m_H^2/M_{planck}^2 \approx 10^{-34}$ vacuum large range of Hierarchy problem stability fermion masses

- gauge unification -> new interactions;
- gravity: strings and extra dimensions
- Experimental hints for new physics

muon (g-2)




Crossroad In Theoretical Physics

LHC online

 $\int s = 14 \text{ TeV p p}$ Luminosity - $10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$ ATLAS, CMS, LHCb, ALICE

- Existing facilities in 2025:
 - LHC with luminosity or energy upgrade
- Options:
 - low energy lepton collider:
 (500 GeV) (upgradable) or
 muon collider Higgs Factory
 - lepton collider in the multi-TeV range:
 CLIC or muon collider
 - hadron collider in hundred TeV range:
 VLHC
- High energy lepton collider required for full study of Terascale physics.

SM extensions

two Higgs doublets Higgs triplets Higgs singlets

new weak gauge interactions

new fermions

New Dynamics

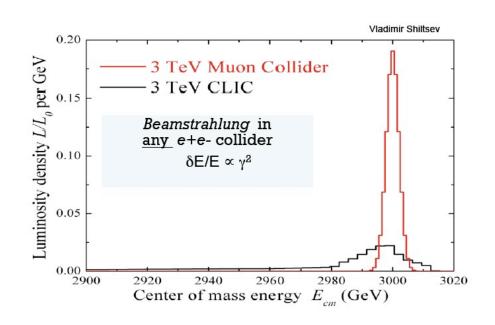
Technicolor, ETC, walking TC topcolor little Higgs models compositeness unparticles ...

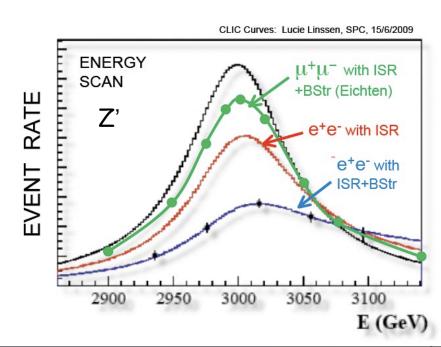
Extra Dimensions

Gravity

Randall-Sundrum

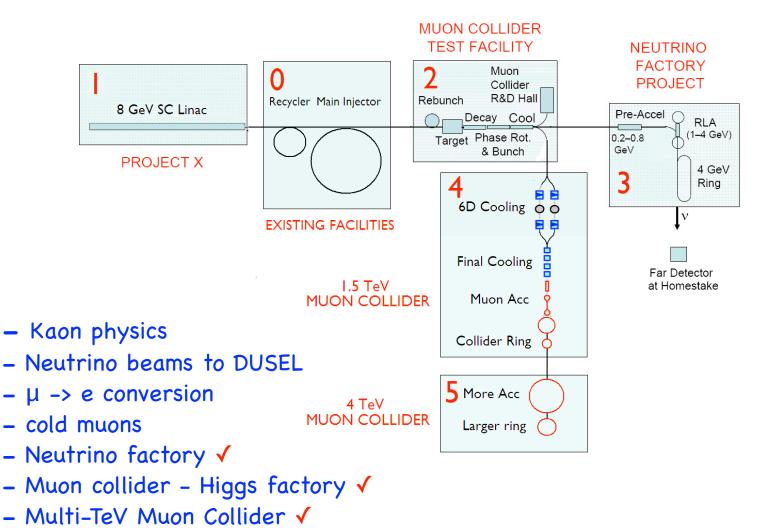
Universal ED


KK modes


.

A Muon Collider

- μ+μ- Collider:
 - Center of Mass energy: 1.5 5 TeV (focus 3 TeV)
 - Luminosity > 10^{34} cm⁻² sec⁻¹ (focus 400 fb⁻¹ per year)
- Compact facility
- Superb Energy Resolution
 - MC: 95% luminosity in dE/E ~ 0.1%
 - CLIC: 35% luminosity in dE/E ~ 1%



Path to Muon Collider Facility

A flexible scenario with physics at each stage:

Estia Eichten MAP Review @ Fermilab 08/24/2010

Neutrino Physics

• SM leptons:
$$\mathsf{L}_e = \left(\begin{array}{c} \nu_e \\ e^- \end{array} \right)_{\mathrm{I}} \quad \mathsf{L}_\mu = \left(\begin{array}{c} \nu_\mu \\ \mu^- \end{array} \right)_{\mathrm{I}} \quad \mathsf{L}_\tau = \left(\begin{array}{c} \nu_\tau \\ \tau^- \end{array} \right)_{\mathrm{I}} \quad \mathsf{R}_{e,\mu,\tau} = e_{\mathrm{R}}, \mu_{\mathrm{R}}, \tau_{\mathrm{R}}$$

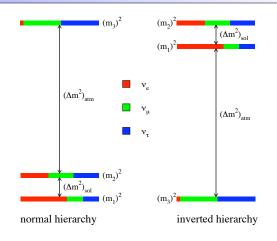
No V_R needed. Singlet under $SU(3)_c \times SU(2)_L \times U(1)_Y$ Lepton number conserved.

- Observation of neutrino flavor mixing drastically changes the picture
- Flavor mixing ⇒ neutrino masses
 - Solar neutrinos
 - Atmospheric neutrinos

$$\Delta m_{\rm solar}^2 << \Delta m_{\rm atm}^2$$

Simple two flavor (α, β) case: with mass eigenstates (i,j) $\nu_{\alpha} = \nu_{i} \cos \theta + \nu_{j} \sin \theta$ $\nu_{\beta} = -\nu_{i} \sin \theta + \nu_{j} \cos \theta$ $P_{\alpha \to \beta} = \sin^{2} 2\theta \sin^{2} \left(\Delta m^{2} L/4E\right)$

Oscillation probability (P) for energy (E) and distance (L)




Theoretical Issues

- Normal or Inverted Mass Hierarchy?
- Majorana or Dirac particles?
 - Majorana: no ν_R mass term violates lepton number conservation $\mathcal{L}_{\mathrm{mass}} = \bar{\nu}_L^c M_L \nu_L + h.c.$
 - Dirac: ν_R $\mathcal{L}_{\mathrm{mass}} = \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}^\dagger \mathcal{M} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} + h.c.$

$$\mathcal{M} \colon \text{ Pure Dirac:} \left(\begin{array}{cc} 0 & M \\ M^{\dagger} & 0 \end{array} \right) \quad \text{Seesaw:} \left(\mathbf{I} \right) \left(\begin{array}{cc} 0 & M \\ M^{\dagger} & M_R \end{array} \right) \quad \left(\mathbf{II} \right) \left(\begin{array}{cc} M_L & M \\ M^{\dagger} & M_R \end{array} \right)$$

Three generation mixing matrix: PMNS

Pontecorvo-Maki-Nakagawa-Sakata Matrix

Three angles: θ_{12} , θ_{23} , θ_{13} CP phases: $\delta(Dirac)$ (α, β, δ)(Majorana)

$$\begin{pmatrix} \nu_{e\mathrm{L}} \\ \nu_{\mu\mathrm{L}} \\ \nu_{\tau\mathrm{L}} \end{pmatrix} = U_{\mathrm{PMNS}} \begin{pmatrix} \nu_{1\mathrm{L}} \\ \nu_{2\mathrm{L}} \\ \nu_{3\mathrm{L}} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_{1\mathrm{L}} \\ \nu_{2\mathrm{L}} \\ \nu_{3\mathrm{L}} \end{pmatrix}$$
 The additional Majorana CP phases appear in lepton number violating interactions: eg. neutrinoless double beta decay.

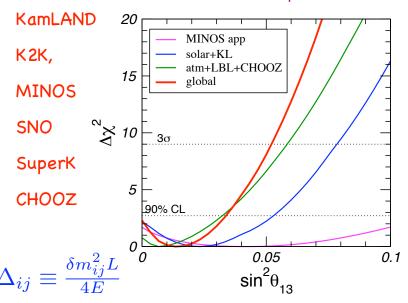
$$c_{ij} = cos(\theta_{ij}) s_{ij} = sin(\theta_{ij})$$

Experimental Status

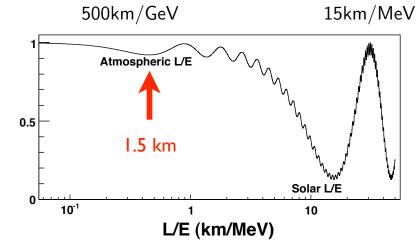
Present status

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	$7.59_{-0.18}^{+0.23}$	7.22 - 8.03	7.03-8.27
$ \Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	$2.40^{+0.12}_{-0.11}$	2.18-2.64	2.07 – 2.75
$\sin^2 \theta_{12}$	$0.318^{+0.019}_{-0.016}$	0.29 – 0.36	0.27 – 0.38
$\sin^2 \theta_{23}$	$0.50^{+0.07}_{-0.06}$	0.39-0.63	0.36 – 0.67
$\sin^2 \theta_{13}$	$0.013^{+0.013}_{-0.009}$	≤ 0.039	≤ 0.053

- $\sin^2 heta_{13}$, δ not yet measured
- Reactor Neutrinos: Daya Bay, Double CHOOZ, Reno


$$P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) = 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21}$$

$$-\sin^{2}2\theta_{13}(\cos^{2}\theta_{12}\sin^{2}\Delta_{31} + \sin^{2}\theta_{12}\sin^{2}\Delta_{32})$$


$$\approx 1 - \sin^{2}2\theta_{13}\sin^{2}\left(\frac{\delta m_{ee}^{2}L}{4E}\right) - \mathcal{O}(\Delta_{21})^{2}$$
Dava Bay sensitivity ≈ 0.01

Daya Bay sensitivity ≈ 0.01

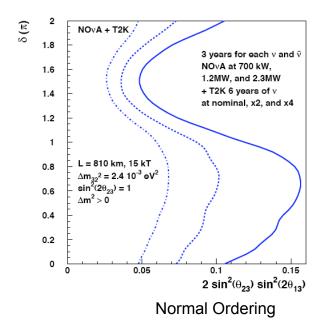
T. Schwetz, M. Tortola and J. Valle [arXiv:0808.2016v3] update

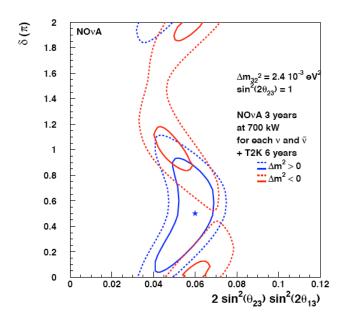
Atmos. L/E $\mu \to \tau$ Atmos. L/E $\mu \leftrightarrow e$ Solar L/E $e \to \mu, \tau$

Long Baseline Experiments

Appearance

- Nova and T2K


$$P(\nu_{\mu} \to \nu_{e}) \approx |\sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{solar}}|^{2}$$


where
$$\Delta_{ij} \equiv |\Delta m_{ij}^2| L/4E$$

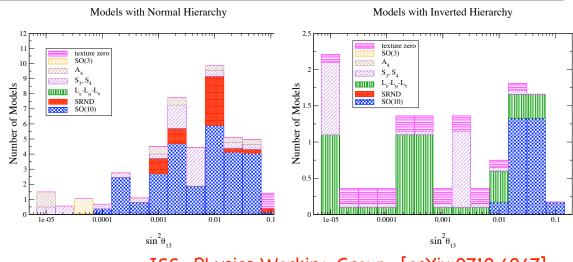
$$\sqrt{P_{\rm atm}} = \sin\theta_{23}\sin2\theta_{13} \Big[\frac{\Delta_{31}\sin(aL\mp\Delta_{31})}{(aL\mp\Delta_{31})} \Big]$$

$$\sqrt{P_{\rm sol}} = \cos\theta_{23}\sin2\theta_{12} \Big[\frac{\Delta_{21}\sin(aL)}{aL} \Big]$$

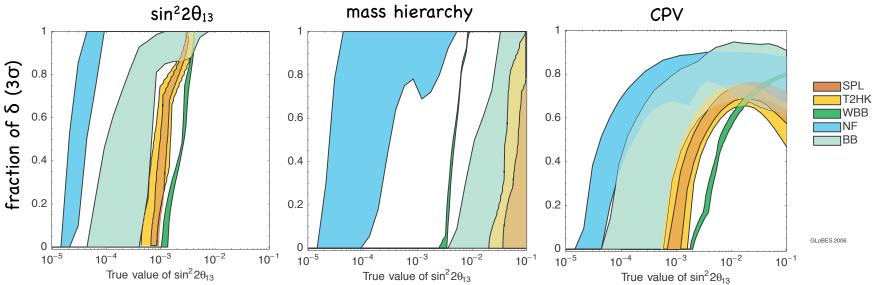
- Index of refraction in matter: $a = G_F N_e / J2 \approx (4000 \text{ km})^{-1}$
- The interference term is the only term that depends on CP phase δ ; also the only term that differs for neutrino/antineutrino beside the matter effects.

Resolving the mass ordering.

inverted order $(\delta \rightarrow \pi - \delta)$



- Complicated to disentangle θ 13, δ and mass ordering

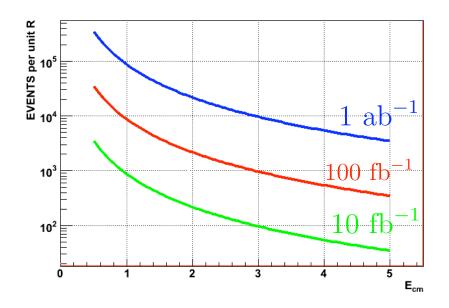


Neutrino Factory

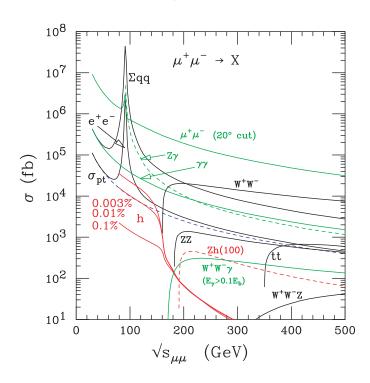
- No theory for the value of $\sin^2\theta_{13}$
- Neutrino factory:
 - Muon storage ring: E = 25 GeV
 - Long straight sections
 - High intensity: 10²¹ muon decays /yr
- Discovery reach for various propos

Very likely a Neutrino Factory will be needed to provide detailed measurements of $\,\theta$ 13, the mass hierarchy and the CPV parameter $\,\delta$.

Estia Eichten MAP Review @ Fermilab 08/24/2010


Muon Collider Basics

- For √s < 500 GeV
 - SM threshold region: top pairs; W+W-; Z0Z0; Z0h; ...
- For √s > 500 GeV
 - For SM pair production ($|\theta| > 10^{\circ}$)


R =
$$\sigma/\sigma_{\text{QED}}(\mu^+\mu^- \rightarrow e^+e^-) \sim \text{flat}$$

$$\sigma_{\text{QED}}(\mu^+\mu^- \rightarrow e^+e^-) = \frac{4\pi\alpha^2}{3s} = \frac{86.8 \text{ fb}}{s(\text{TeV}^2)}$$

- High luminosity required

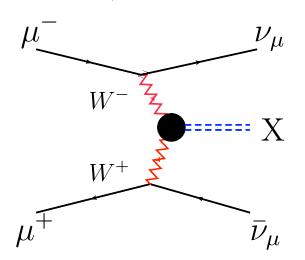
Standard Model Cross Sections

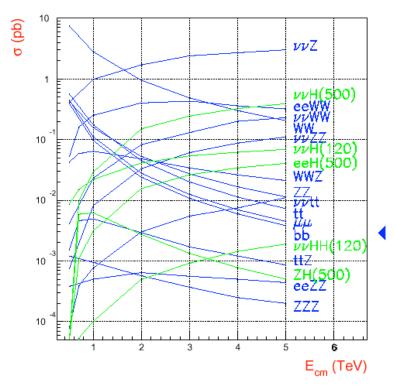
11

$$\sqrt{s} = 3.0 \text{ TeV}$$
 $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$
 $\rightarrow 100 \text{ fb}^{-1} \text{year}^{-1}$

 \Rightarrow 965 events/unit of R

Processes with R ≥ 0.1 can be studied


Total - 540 K SM events per year



Muon Collider Basics

CLIC (or MC e<-> μ)

- For √s > 1 TeV Fusion Processes
 - Large cross sections
 - Increase with s.
 - Important at multi-Tev energies
 - $-M_X^2 < s$
 - Backgrounds for SUSY processes
 - t-channel processes sensitive to angular cuts

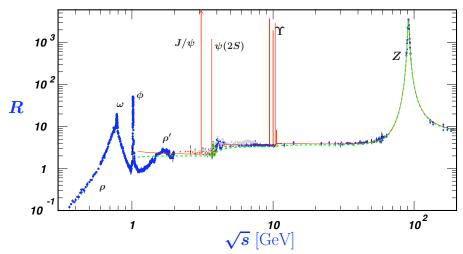
$$\sigma(s) = C \ln(\frac{s}{M_{\rm X}^2}) + \dots$$

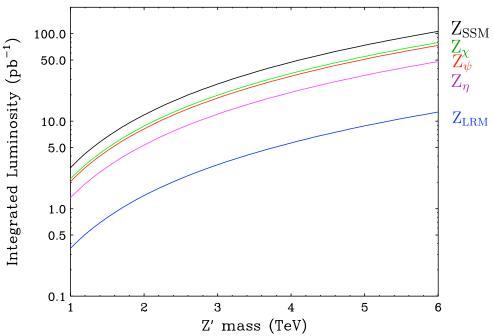
An Electroweak Boson Collider

Minimum Luminosity for Muon Collider

Universal behavior for s-channel resonance

$$\sigma(E) = \frac{2J+1}{(2S_1+1)(2S_2+1)} \frac{4\pi}{k^2} \left[\frac{\Gamma^2/4}{(E-E_0)^2 + \Gamma^2/4} \right] B_{in} B_{out}$$

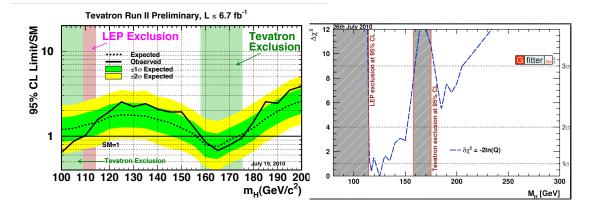

Convolute with beam resolution ΔE .


If ΔE≪ Γ

$$R_{\text{peak}} = (2J+1)3 \frac{B(\mu^{+}\mu^{-})B(visible)}{\alpha_{\text{EM}}^{2}}$$

- Can use to set minimum required luminosity
 - Likely new physics candidates:
 - scalars: h, H⁰, A⁰,...
 - qauge bosons: Z'
 - new dynamics: bound states
 - ED: KK modes
 - Example new gauge boson: Z'
 - SSM, E6, LRM
 - 5σ discovery limits: 4-5 TeV at LHC (@ 300 fb⁻¹)

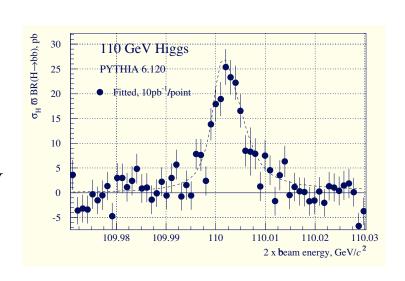
Minimum luminosity at Z' peak: $\mathcal{L} = 0.5-5.0 \times 10^{30} \text{ cm}^{-2} \text{ sec}^{-1}$ for M(Z') -> 1.5-5.0 TeV


The integrated luminosity required to produce 1000 $\mu^+\mu^- \rightarrow Z'$ events on the peak

Higgs Boson

SM Higgs constraints:

- Direct: LEP m_H > 114.7 GeV (95% CL)
 CDF/DO m_H < 158 or > 175 GeV (95% CL)
- Indirect: LEP/SLC m_H < 190 GeV (95% CL)
- Combined: Gfitter 114.6 < m_H < 151.8 GeV (2 σ)

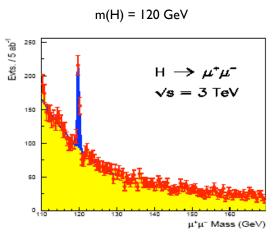


- Higgs discovery LHC -> Higgs boson couplings?
 - Higgs self-couplings?
 - Any additions scalars? EW doublets, triplets or singlets?
 - Where's the next scale?

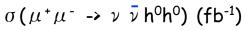
For low energy muon collider

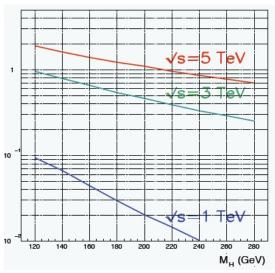
- s-channel Higgs production
 - Coupling to lepton mass: $\left[\frac{m_{\mu}}{m_{e}}\right]^{2}=4.28\times10^{4}$
 - Narrow width: $m_h=120~{
 m GeV}
 ightarrow \Gamma=3.6~{
 m MeV}$
- Direct Higgs width measurement:

 $\Delta E/E \approx 0.003\% \text{ and } 100 \ pb^{-1}$



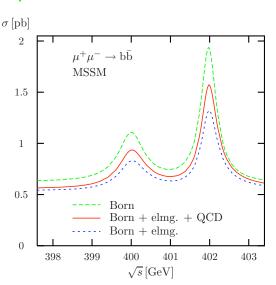
Higgs Boson


- Various processes available for studying the Higgs at a multi-TeV muon collider
 - associated production: Zh^o
 - ▶ R ~ 0.12
 - search for invisible h⁰ decays
 - Higgsstrahlung: tth⁰
 - ▶ R ~ 0.01


needs 10 ab⁻¹

- measure top coupling
- W*W* fusion (m_h = 120 GeV)
 - $v_{\mu}\bar{v}_{\mu} h^{0}$: R ~ 1.1 s In(s) (s in TeV²)
 - $V_{\mu}\bar{V}_{\mu} h^0h^0$: measure Higgs self couplings

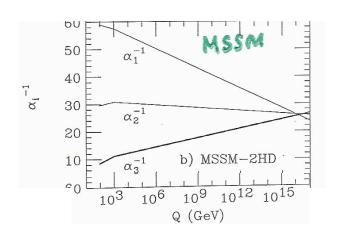
Dittmaier and Kaiser [hep-ph/0203120]



MC or CLIC:

good benchmark process

- Two Higgs Doublet Model (MSSM)
 - h^0 , H^0 , A^0 , H^{\pm}
 - Decoupling limit: MA >> MZ
 - h⁰ couplings near SM Higgs values
 - H⁰, A⁰, H[±] masses nearly degerate
 - Precise energy resolution needed to resolve H^0 , A^0 states



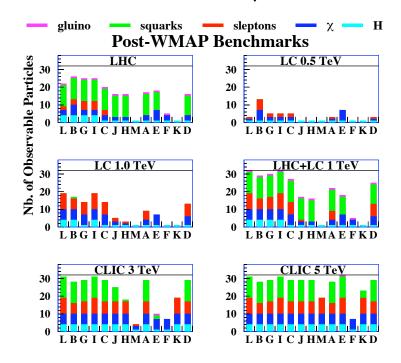
Supersymmetry

Supersymmetry

- Couplings of sparticles determined by symmetry.
 Masses depend on SUSY breaking mechanism.
- If discovered at LHC ->
 - What is the spectrum of superpartner masses?
 - Dark matter candidates?
 - Are all the couplings correct?
 - What is the structure of flavor mixing interactions?
 - Are there additional CP violating interactions?
 - Is R parity violated?
 - What is the mass scale at which SUSY is restored?
 - What is the mechanism of SUSY breaking?

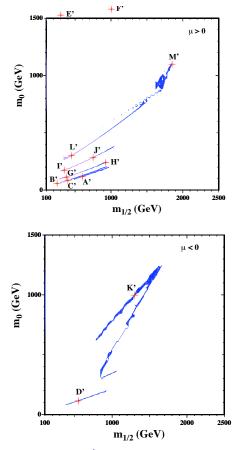
cMSSM [Constrained Minimal Supersymmetric Standard Model]

- Five parameters: m_0 , $m_{1/2}$, $\tan \beta$, A/m_0 , $sign(\mu)$
- Experimental constraints
- Direct limit (LEP, CDF, Dzero): $m_{h^0}, m_{\chi^+}, m_{ ilde{t}}, \ldots$
- Electroweak precision observables (EWPO): $M_W^2, \sin^2 \theta_{sw}, (g-2)_\mu, \dots$
- B physics observables (BPO): $b \to s + \gamma$, $BR(B_s \to \mu^+ \mu^-)$, ...
- Cold dark matter (CDM): $\Omega_{DM} = .23 \pm .04$
- Allowed regions are narrow filaments in parameter space



Supersymmetry

The combination of the LHC and a multiTeV lepton collider is required to
fully study the SUSY spectrum.


Allowed regions and sample points

- cMSSM 2004 CLIC study SUSY reach

Similar Conclusion for MC

Anupama Atre, Low Emittance Muon Collider Workshop, Fermilab, April 2008

- Alternate supersymmetry breaking schemes (mGMSB, mAMSB)
 also require multiTeV lepton collider.
 S. Heinemeyer, X. Miao, S. Su, G. Wieglein [arXiv:0805.2359]
- Supersymmetry provides a strong case for a multiTeV muon collider

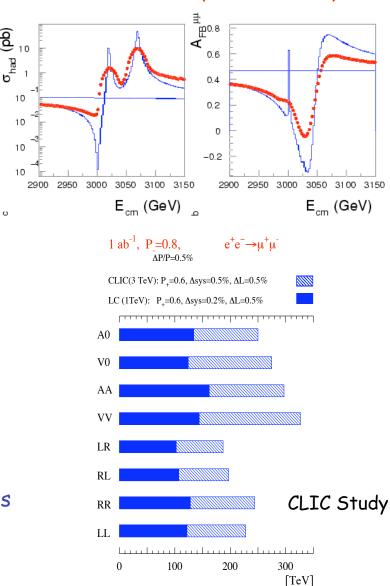
Estia Eichten MAP Review @ Fermilab 08/24/2010

New Strong Dynamics

- A new strong interaction at the TeV scale
- What is the spectrum of low-lying states?
- What is the ultraviolet completion?
- Any new insight into fermion flavor mixing and CP violation? , ...

Technicolor, ETC, Walking TC, Topcolor, ...

- Technipions s channel production (Higgs like)
- Technirhos Nearby resonances (ρ_T, ω_T)
- Need fine energy resolution of muon collider.
- New contact interaction:


Composite quarks

$$\mathcal{L} = \frac{4\pi}{\Lambda^2} (\bar{\Psi} \Gamma \Psi) (\bar{\Psi} \Gamma' \Psi)$$

- Both MC and CLIC probe scales Λ > 200 TeV

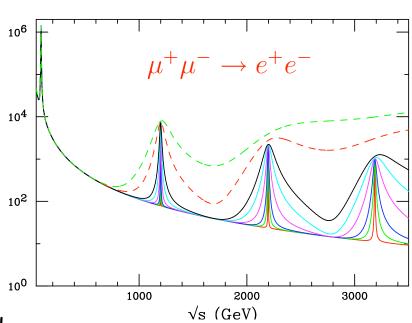
 Muon Collider Study
 - E.Eichten, S.~Keller, [arXiv:hep-ph/9801258]
- MC forward cone cut $|\theta|$ > 20° little effect on limits
- Polarization useful to disentangle chiral nature of interaction.
 good benchmark processes

CLIC - D-BESS model (resolution 13 GeV)

08/24/2010

Extra Dimensions

Solves the Naturalness Problem: The effective GUT scale is moved closer.


Theoretical issues

- How many dimensions?
- Which interactions (other than gravity) extend into the extra dimensions?
- At what scale does gravity become a strong interaction?
- What happens above that scale?
- ...

Randall-Sundrum model: warped extra dimensions

- two parameters:
 - mass scale ∝ first KK mode;
 - width ≈ 5D curvature / effective 4D Planck scale.

possible KK modes

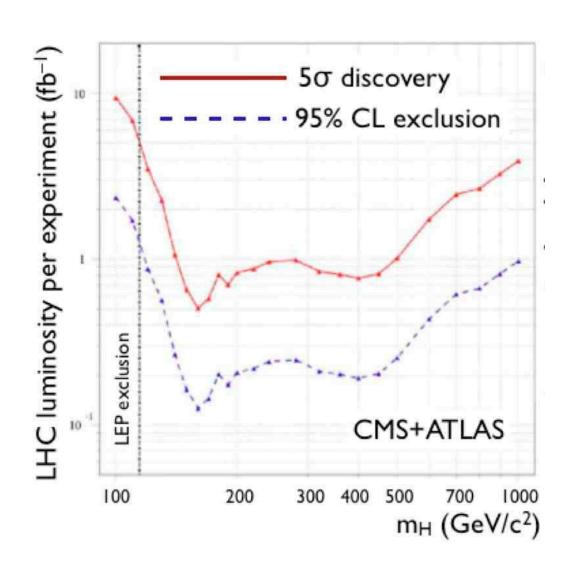
LHC discovery - Detailed study at a muon collider

(fb)

Summary

- A multiTeV lepton collider is required for full coverage of Terascale physics.
- The physics potential for a muon collider at $\sqrt{s} \sim 3$ TeV and integrated luminosity of 1 ab⁻¹ is outstanding. Particularly strong case for SUSY and new strong dynamics.
- Narrow s-channel states played an important role in past lepton colliders. If such states exist in the multi-TeV region, they will play a similar role in precision studies for new physics. Sets the minimum luminosity scale.
- A staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics.
- A detailed study of physics case for 1.5-4.0 TeV muon collider has begun. Goals:
 - Identify benchmark processes: pair production (slepton; new fermion), Z' pole studies, h^0 plus missing energy, resolving nearby states (H^0 - A^0 ; ρ_T - ω_T^0), ...
 - Dependence on initial beam [electron/muon, polarization and beam energy spread] as well as luminosity to be considered.
 - Estimates of collision point environment and detector parameters needed.
 - Must present a compelling case even after ten years of running at the LHC.

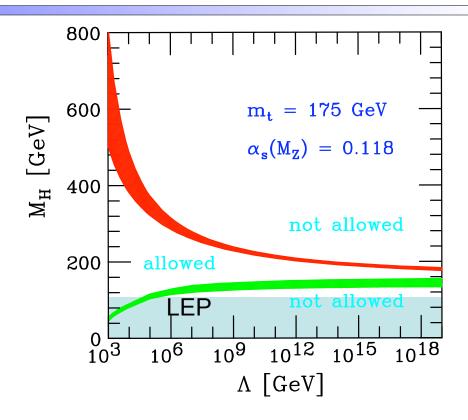
 http://www.fnal.gov/directorate/Longrange/Steering_Public/workshop-muoncollider.html

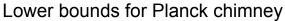


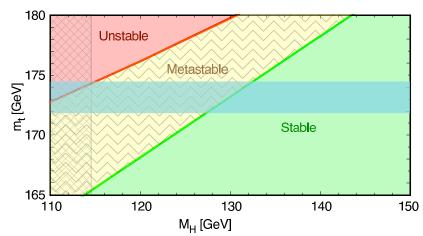
Backup Slides

21

LHC - Discovery of the SM Higgs






Constraints on Standard Model Higgs

Theoretical Constraints:

- The standard model with an elementary Higgs scalar is only self-consistent up to some maximum energy scale (Λ) .
- Upper bound A large Higgs mass requires a large higgs self-coupling term. This coupling increases with the scale Λ until perturbative theory breaks down.
- Lower bound For small Higgs mass, the quantum corrections can lead to vacuum instability.
- Planck Chimney: SM self-consistent to Planck scale ($\approx 10^{19}$ GeV)

Two Higgs Doublets (MSSM)

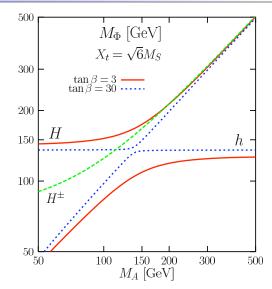
decay amplitudes depend on two parameters:

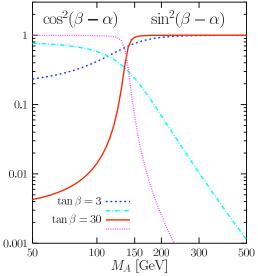
$$\mu^{+}\mu^{-}, b\overline{b} \qquad t\overline{t} \qquad ZZ, W^{+}W^{-} \qquad ZA^{0}$$

$$h^{0} \quad -\sin\alpha/\cos\beta \quad \cos\alpha/\sin\beta \quad \sin(\beta-\alpha) \quad \cos(\beta-\alpha)$$

$$H^{0} \quad \cos\alpha/\cos\beta \quad \sin\alpha/\sin\beta \quad \cos(\beta-\alpha) \quad -\sin(\beta-\alpha)$$

$$A^{0} \quad -i\gamma_{5}\tan\beta \quad -i\gamma_{5}/\tan\beta \qquad 0 \qquad 0$$


$$\tan 2\alpha = \frac{M_{A}^{2} + M_{Z}^{2}}{M_{A}^{2} - M_{Z}^{2}} \tan 2\beta.$$


- decoupling limit $m_A^0 \gg m_Z^0$:

- h⁰ couplings close to SM values
- H^0 , H^{\pm} and A^0 nearly degenerate in mass
- H^0 small couplings to VV, large couplings to ZA^0
- For large $\tan \beta$, H^0 and A^0 couplings to charged leptons and bottom quarks enhanced by $\tan \beta$. Couplings to top quarks suppressed by $1/\tan \beta$ factor.

- good energy resolution is needed for H^o and A^o studies:

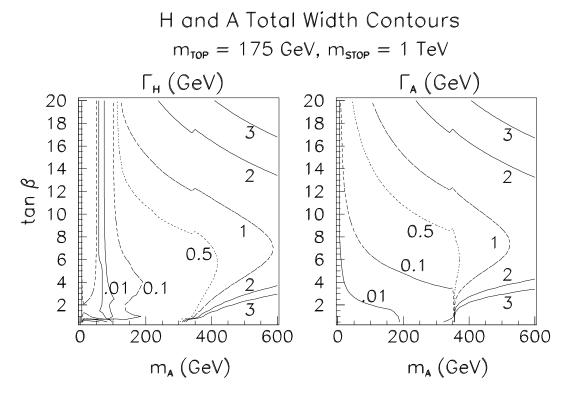
- for s-channel production of H^0 : $\Gamma/M \approx 1\%$ at tan $\beta = 20$.
- nearby in mass need good energy resolution to separate H and A.
- can use bremsstrahlung tail to see states using bb decay mode.

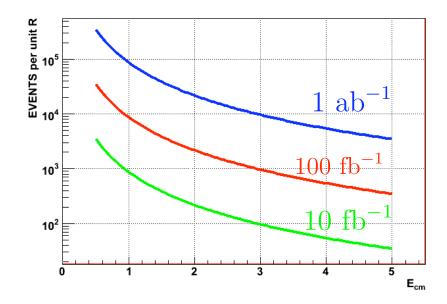
good benchmark process

08/24/2010

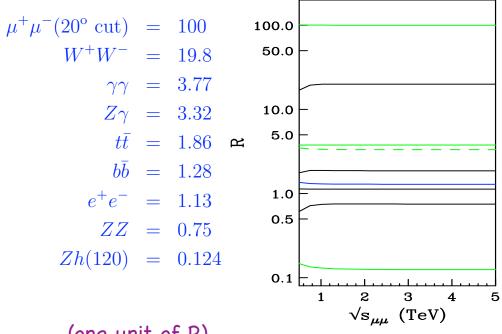
Good energy resolution is needed for H⁰ and A⁰ studies:

- for s-channel production of H^0 : $\Gamma/M \approx 1\%$ at $\tan\beta = 20$.
- nearby in mass need good energy resolution to separate H and A
- can use bremsstrahlung tail to see states using bb decay mode




Figure 20: Contours of H^0 and A^0 total widths (in GeV) in the $(m_{A^0}, \tan \beta)$ parameter space. We have taken $m_t = 175$ GeV and included two-loop/RGE-improved radiative corrections using $m_{\tilde{t}} = 1$ TeV and neglecting squark mixing. SUSY decay channels are assumed to be absent.

Estia Eichten MAP Review @ Fermilab 08/24/2010



Multi-TeV Muon Collider Basics

- For √s > 500 GeV
 - Above SM pair production thresholds: $R = \sigma/\sigma_{QED} (\mu^+\mu^- - e + e -)$ flat
- Luminosity Requirements

R at
$$\sqrt{s} = 3 \text{ TeV}$$

 $O(\alpha_{em}^2) O(\alpha_s^0)$

(one unit of R)

$$\sigma_{\text{QED}}(\mu^{+}\mu^{-} \to e^{+}e^{-}) = \frac{4\pi\alpha^{2}}{3s} = \frac{86.8 \text{ fb}}{s(\text{TeV}^{2})}$$

For example:

$$\sqrt{s} = 3.0 \text{ TeV}$$

965 events/unit of R

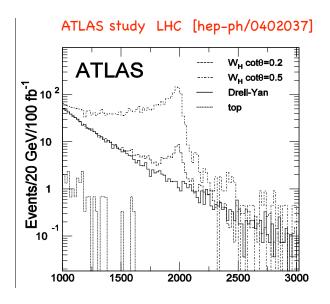
 $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$

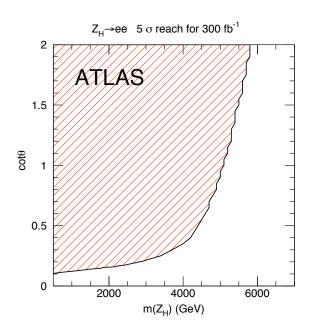
 \rightarrow 100 fb⁻¹year⁻¹

Processes with $R \ge 0.1$ can be studied

Total - 128 K SM events per year

New Fermions and Gauge Bosons

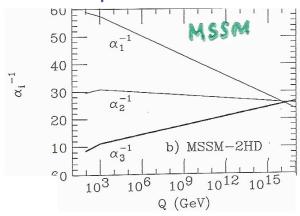

- Present CDF/DO bounds on W', Z', and new quarks effectively rule out production at ILC.


State	CDF/D0 Limit (GeV)		
Quark: (W,Z,h) + jet	335		
z' (SM)	1071		
W' (SM)	860		

 Littlest Higgs Model: good benchmark processes charge (2/3) quark T (EW singlet), new W, Z, and A gauge bosons, Higgs triplet

At the LHC, T observable for m(T) < 2.5 TeVFor W, Z, and A dependent on mixing parameters

Muon collider will allow detailed study.
 Requires high luminosity 1 ab⁻¹ for T



Supersymmetry

Supersymmetry

- Q_{susy} |boson> = |fermion>: gluon -> gluino ,...; W boson -> wino; higgs -> higgino, ... Q_{susy} |fermion> = |boson>: top quark -> top squark (L,R), ...; electron -> selectron(L,R), ...
 - spin 1/2 symmetry charges $\{\overline{Q}_{susy}, Q_{susy}\} = 2 \gamma^{\mu} P_{\mu}; Q_{susy} H | state > = H Q_{susy} | state >$
- supersymmetry dictates the couplings between particles and sparticles
- supersymmetry is broken M_{sparticle} ≠ M_{particle}
- Solves the hierarchy and GUT unification problems
- Theoretical issues after discovery at the LHC:
 - What is the spectrum of superpartner masses?
 - Dark matter candidates?
 - Are all the couplings correct?
 - What is the structure of flavor mixing interactions?
 - Are there additional CP violating interactions?
 - Is R parity violated?
 - What is the mass scale at which SUSY is restored?
 - What is the mechanism of SUSY breaking?

I	Names		spin 0	spin $1/2$	$\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}},\mathrm{U}(1)_{y}$
	squarks, quarks $(\times 3 \text{ families})$	$egin{array}{c} Q \\ ar{u} \\ ar{d} \end{array}$	$ \begin{array}{c} (\tilde{u}_{\mathrm{L}}, \tilde{d}_{\mathrm{L}}) \\ \tilde{\bar{u}}_{\mathrm{L}}(\tilde{u}_{\mathrm{R}}) \\ \tilde{\bar{d}}_{\mathrm{L}}(\tilde{d}_{\mathrm{R}}) \end{array} $	$(u_{\rm L}, d_{\rm L})$ $\bar{u}_{\rm L} \sim (u_{\rm R})^{\rm c}$ $\bar{d}_{\rm L} \sim (d_{\rm R})^{\rm c}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	sleptons, leptons (× 3 families)	$L = \bar{e}$	$egin{aligned} (ilde{ u}_{ m eL}, ilde{e}_{ m L}) \ & ilde{ar{e}}_{ m L}(ilde{e}_{ m R}) \end{aligned}$	$(\nu_{\rm eL}, e_{\rm L})$ $\bar{e}_{\rm L} \sim (e_{\rm R})^{\rm c}$	1, 2, -1 1, 1, 2
	higgs, higgsinos	$H_{ m u}$ $H_{ m d}$	$(H_{\rm u}^+, H_{\rm u}^0) (H_{\rm d}^0, H_{\rm d}^-)$	$\begin{array}{c} (\tilde{H}_{\mathrm{u}}^{+}, \tilde{H}_{\mathrm{u}}^{0}) \\ (\tilde{H}_{\mathrm{d}}^{0}, \tilde{H}_{\mathrm{d}}^{-}) \end{array}$	1, 2, 1 1, 2, -1

Table 1: Chiral supermultiplet fields in the MSSM.

Names	spin $1/2$	spin 1	$SU(3)_c, SU(2)_L, U(1)_y$
gluinos, gluons	$ ilde{g}$	g	8 , 1 , 0
winos, W bosons	$\widetilde{W}^{\pm},\widetilde{W}^{0}$	W^{\pm}, W^0	1 , 3 , 0
bino, B boson	\tilde{B}	B	1 , 1 , 0

Table 2: Gauge supermultiplet fields in the MSSM.

cMSSM

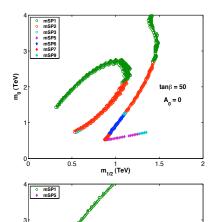
Many studies of constraints on cMSSM

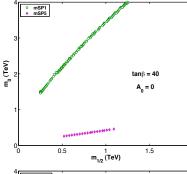
- Present experimental constraints

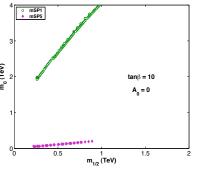
- Direct limit (LEP, CDF, Dzero): $m_{h^0}, m_{\chi^+}, m_{ ilde{t}}, \ldots$
- Electroweak precision observables (EWPO): $M_W^2, \sin^2 heta_{sw}, (g-2)_{\mu}, ...$
- B physics observables (BPO): $b \to s + \gamma$, $BR(B_s \to \mu^+ \mu^-)$, ...
- Cold dark matter (CDM): $\Omega_{DM} = .23 \pm .04$
- Allowed regions are narrow filaments in parameter space
- Theoretical fine tuning

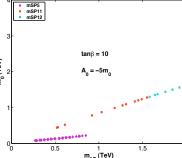
$$M_{h0} > 113.8 \Rightarrow large m_{stop}$$

requires large cancellations in the Higgs potential


 \Rightarrow fine tuning (to a few %)


Monte Carlo searches of parameter space


J. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber, G. Wieglein [arXiv:0706.0652];


D. Feldman, Zuowei Lui and Pran Nath, PRL 99, 251802 (07); [arXiv:0802.4085]; ...

08/24/2010

tree

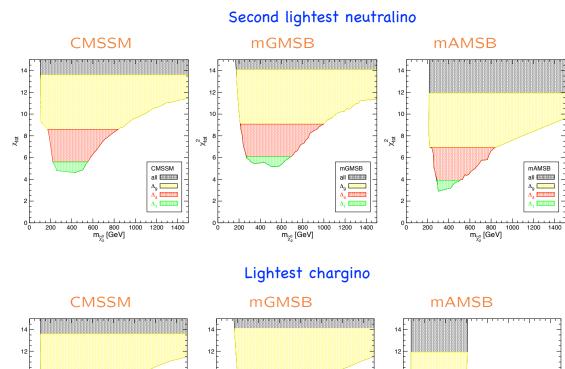
$$M_{h^0}^2 = m_Z^2 \cos^2(2\beta) + \frac{3}{4\pi^2} \sin^2\beta y_t^2 \left[m_t^2 \ln\left(m_{\tilde{t}_1} m_{\tilde{t}_2}/m_t^2\right) + c_{\tilde{t}}^2 s_{\tilde{t}}^2 (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2) \ln(m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2) + c_{\tilde{t}}^4 s_{\tilde{t}}^4 \left\{ (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)^2 - \frac{1}{2} (m_{\tilde{t}_2}^4 - m_{\tilde{t}_1}^4) \ln(m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2) \right\} / m_t^2 \right].$$

cMSSM, mGMSB, mAMSB Studies

More generally, full coverage likely requires a multi TeV lepton collider

S. Heinemeyer, X. Miao, S. Su, G. Wieglein [arXiv:0805.2359] (using only EWPO, BPO and LEP)

Second lightest neutralino:


m(\mathfrak{X}_2) < 900 GeV for $\Delta X^2 < 4$ Heavy for LHC – possibly in decay chain ? Lepton collider: $\chi^0_2 \to \chi^0_1 + X$

Lightest chargino:

m($\widetilde{\chi_1}^+$) < 800, 900, 300 GeV for $\Delta \chi^2 < 4$ Heavy for LHC – possibly in decay chain ? Lepton collider: Observable at ILC for mAMSB

Lightest stop, sbottom and gluino:

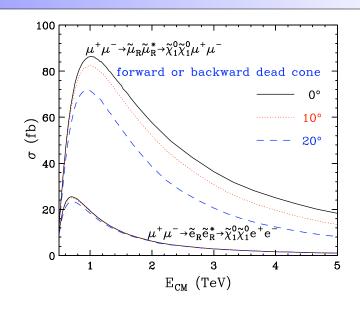
 $m(\widetilde{t_1})$ > 500 for $\Delta X^2 < 4$ Easy for LHC up to 2 TeV Lepton collider: Detailed study?

all Ettibiliti

m_ợ [GeV]

m_{γ²} [GeV]

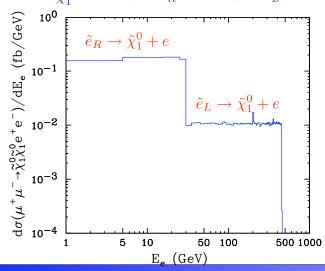
all E

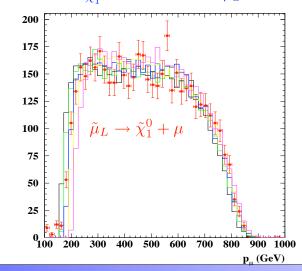

800 1000 1200 1400

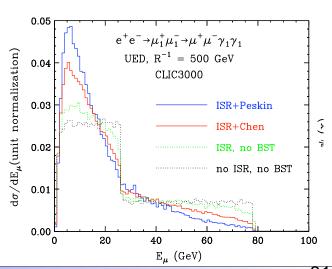
Example Process at Muon Collider

- $\mu^{+}\mu^{-} \rightarrow \tilde{e}_{1}^{+}\tilde{e}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}e^{+}e^{-}$
 - Angular cut at 20° from beam direction:
 - 50% reduction for smuon pairs
 - 20% reduction for selectron pairs
 - Mass measurements using edge method better for MC than CLIC:

$$E_{\text{max/min}} = \frac{1}{2} M_{\tilde{e}} \left[1 - \frac{M_{\tilde{\chi}_1^0}^2}{M_{\tilde{e}}^2} \right] \gamma (1 \pm \beta)$$


Effect of beamstrahlung




$$m_{\tilde{\chi}_1^0} = 212; \ m_{\tilde{e}_R} = 222; \ m_{\tilde{e}_L} = 374 \ {\rm GeV} \ m_{\tilde{\chi}_1^0} = 660 \ {\rm GeV}; \ m_{\tilde{\mu}_L} = 1150 \ {\rm GeV}$$

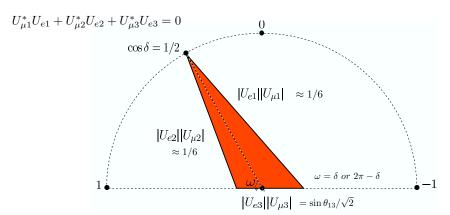
CLIC report (2004)

Datta, Kong and Matchev [arXiv:hep-ph/0508161]

Goals of Neutrino Program

Basic goals

- (a) Determine Dirac or Majorana nature of neutrinos.
- (b) Determine the mass hierarchy.
- (c) Measure θ_{13} , δ and improve θ_{12} , θ_{23} measurements
- (d) Study unitarity of PMNS matrix.
- (e) Are there additional mixing or CPV from new particles or interactions?

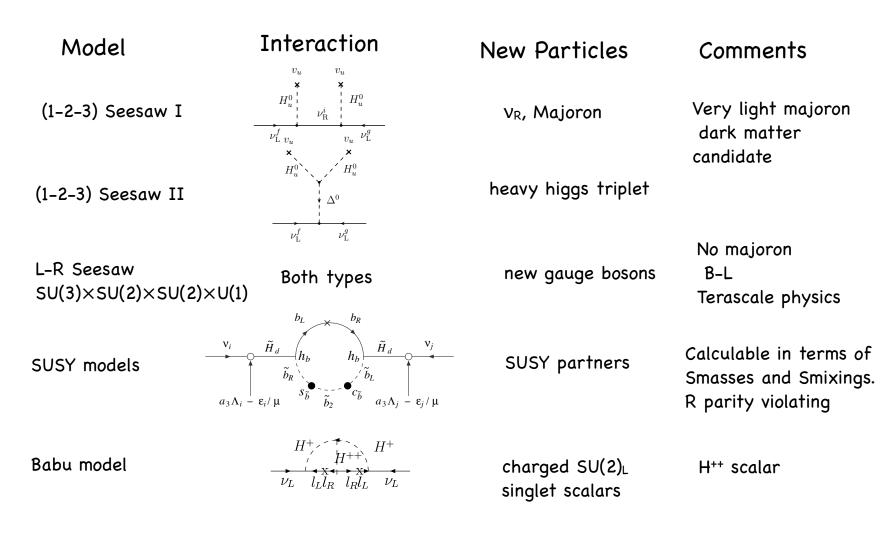

• Why is this important?

- (a) Neutrino masses are very small. Theoretical models for these masses predict new particles at the Terascale or a new scale beyond.
- (b) Potential source of lepton number violation and CP violation. Leptogenesis might be responsible the observed baryon asymmetry in the universe.
- (c) Contributions to dark matter and cosmological evolution.
- (d) Complimentary to energy frontier physics (LHC)

Why a Neutrino Factory?

- (a) Large $\sin^2(2\theta_{13})$ (≥ 0.005) can explore new physics as subleading effects.
- (b) Small $\sin^2(2\theta_{13})$ provides unmatched sensitivity.

Unitarity Triangle:


$$|J| = 2 \times Area$$

$$J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2\sin\delta$$

Non-Standard Neutrino Interactions

A plethora of theoretical models:

Texture models, ...